ストリップライン対マイクロストリップ: その違いとPCB配線のガイドライン

回路基板の配線の黄色い画像

 

筆者は、初めて高速設計技術についての説明を聞いたとき、全く頭に入ってきませんでした。これは、筆者が設計者としてのキャリアを開始したばかりだったので、困惑の原因が経験不足であったことは確かです。ストリップラインおよびマイクロライン配線の概念そのものが全く理解できませんでした。講師が、自分になじみのない全く異なるタイプのPCBについて話していると思いました。幸い、それらがストリップラインやマイクロストリップというPCBではないことを知って、この困惑はすぐに解決しました。そうではなく、ストリップラインおよびマイクロストリップは、PCBに高速の伝送線路を配線する、2つの異なる方法でした。

 

ストリップラインとマイクロストリップは、場合によっては理解しにくいものです。ですから、設計初心者やこのトピックについての再トレーニングを探している設計者に、この基本レビューは最適です。

 

人とPCB回路の作図

ストリップラインおよびマイクロストリップについて

 

ストリップラインおよびマイクロストリップとは

ストリップラインおよびマイクロストリップは、PCBに高速伝送線路を配線する方法です。ストリップラインは、PCBの内層の2つのGNDプレーンに挟まれた、絶縁材で覆われた伝送線路配線です。マイクロストリップ配線は、基板の外層に配線された伝送線路です。このため、絶縁材によって単一GNDプレーンから分離されます。

 

マイクロストリップは、基板の表面層に伝送線路を配線するため、ストリップラインよりも優れた信号特性を持ちます。1つのプレーンと1つの信号層から成るレイヤ構成で製造プロセスがより単純なため、マイクロストリップは基板の製造コストも節約できます。ストリップラインは、2つのGNDプレーンの間に組み込まれた配線をサポートする複数のレイヤが必要なため、製造がより複雑です。ただし、ストリップラインでコントロールされるインピーダンストレースの幅は、同じ値のマイクロストリップのインピーダンストレースより狭くなります。これは、2つ目のGNDプレーンによります。このようにトレース幅が狭くなると、回路を高密度にできるため、よりコンパクトなデザインが可能になります。ストリップラインの内層配線はEMIも抑え、より確実な危険防止策を提供します。

 

ストリップラインとマイクロストリップには異なる長所があります。どちらの方法がよいかの判断は、設計ニーズに基づいて行う必要があります。高密度の高速設計では、多くの場合、多層基板で2つの方法を併用して設計目標を達成します。

 

さらに、高速設計で伝送線路を配線する際、設計全体でコントロールされたインピーダンスを保持することは非常に重要です。伝送線路が配線されたPCBのレイヤー、伝送線路トレースの物理特性、絶縁体の特性は全て、回路に最適なインピーダンス値を設定するため、一緒に計算する必要があります。インピーダンスの計算に使用するストリップラインおよびマイクロストリップのモデルが異なる、さまざまなインピーダンスカリキュレーターがあります。

 

異なるタイプの伝送線路配線の画像

PCBの設計において重要なストリップラインおよびマイクロストリップ配線

 

ストリップライン配線およびマイクロストリップ配線の例

以下に、ストリップラインおよびマイクロストリップの配線技術の例と、それらの特性がインピーダンス計算に及ぼす影響を説明します。

 

  1. マイクロストリップ。外層に配線された伝送線路がマイクロストリップとみなされます。これらのモデルは、トレースの厚みと幅、および基層の高さと絶縁体の種類に基づきます。
  2. エッジ結合マイクロストリップ。この技術は、差動ペアの配線に使用されます。標準的なマイクロストリップ配線と同じ構造ですが、モデルは、差動ペア用の配線スペースが加わり、より複雑です。
  3. エンベデッドマイクロストリップ。この構造は通常のマイクロストリップと似ていますが、伝送線路の上に別の絶縁体層がある点が異なります。ソルダ―マスクは絶縁体層とみなすことができ、インピーダンス計算で考慮する必要があります。
  4. シンメトリックストリップライン。(2つのGNDプレーンの間の)内層に配線されるストリップラインは、シンメトリックストリップライン、あるいは単に「ストリップライン」配線とみなされます。マイクロストリップと同様に、このモデルは、2つのプレーンの間に組み込まれているトレースに応じて調整された計算により、トレースの厚みと幅、および基層の高さと絶縁体の種類に基づきます。
  5. アシンメトリックストリップライン。シンメトリックストリップラインモデルと似ていますが、このモデルは2つのプレーンの間で厳密には層間の中心にない伝送線路を考慮しています。
  6. エッジ結合ストリップライン。この技術は、内層の差動ペアの配線に使用されます。標準的なストリップラインと同じ構造ですが、モデルは、差動ペア用の配線スペースが加わり、より複雑です。
  7. ブロードサイド結合ストリップライン。この技術も、内層の差動ペアの配線に使用されます。ただし、差動ペアを横方向ではなく縦方向に並べて配線します。モデルはエッジ結合ストリップラインに似ています。

 

ストリップラインおよびマイクロストリップに関するこのチュートリアルが、それらの概念に付きものの困惑を解消する助けになることを望みます。伝送線路を配線する2つの異なる方法であるストリップラインおよびマイクロストリップは、最終的に、より高性能な高速基板の設計に役立ちます。

 

高速設計とCADレイアウトソフトウェアを使って成功を収める方法について詳しくお知りになりたい場合は、アルティウムのエキスパートにお問い合わせください。

About the Author

Altium Designer

PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

Visit Website More Content by Altium Designer
Previous Article
学生ロケットチームOronos Polytechnique、PCB設計で高い目標へとリフトオフ
学生ロケットチームOronos Polytechnique、PCB設計で高い目標へとリフトオフ

Oronos Polytechniqueチームについてご覧ください。

Next Article
Altium Designer: PCB設計でプロジェクトテンプレートを使用するメリット
Altium Designer: PCB設計でプロジェクトテンプレートを使用するメリット

新しいPCBを設計する際に、Altium Designerのプロジェクトテンプレートを活用すると、回路をコピーしてすばやく新しい設計を作成できます。

Altium Designerの無償評価版を入手する。

無償ダウンロード